Unit 1 Test tomorrow

In front of you is the review - work on it. The last 15 minutes we will go over any questions you have

Music - one ear bud

Homework due Friday!

Unit 1 Honors Study Guide

Matching: Classify each function on the left with its description on the right.

- 1. $a_n = \frac{5}{2}(8)^{(n-1)}$

Arithmetic, Recursive

- $a_n = \frac{6}{5}n 1$

b. Arithmetic, Explicit

- 3. $a_n = 6 \cdot a_{n-1}, a_1 = 2$

- c. Geometric, Recursive
- d. Geometric, Explicit

Matching: Match each sequence on the left with a formula on the right.

$$\bigcap$$
 4

- $C_{4.}$ 3,-5,-13,-21 -8=0

- <u>5</u>. 4, 20, 100, 500 ×5

common difference is. Come up with the recursive and explicit functions for each as well.

b. $a_n = 5 \cdot a_{n-1}, a_1 = 4$

- $\frac{1}{2}$ 6. 3, $\frac{3}{8}$, $\frac{3}{64}$, $\frac{3}{512}$, \times
- c. $a_n = -8n + 11$

For each table below, determine if the sequence is arithmetic or geometric. Then tell what the constant ratio or

d. $a_n = 3\left(\frac{1}{\Omega}\right)^{(n-1)}$

6	7.
- 1	

١	
-1	
۰ ا	
Ø	

•	• • •	~ 1
Term	Value	A=-26 46
Number		An= An-170
7	4	7+5) SP
8	9	15 21150
9	14	T15 -31101
10	10	770

Anthmotic d=+5

· Geametricy r=6

8.	, Ce	6		
	Term	Value		•
N	umber			
	2	1	/	y la
	3	6	\wedge	X6 VIA
	4	36	\wedge	XV
	5	216	7	Λ.Ψ

A = 1/6

 $A_{n} = 6(a_{n-1})$

9. Below is an arithmetic sequence. Complete the table with the missing values.

x	1	2	3	. 4	5
f(x)	8	21	34	47	60

$$\frac{60-8}{5-1} = +13$$

		geometric seq	uence. Complete t	he table with tl	ne missing values	s. Is that the only	ratio that works?
Why	?						-512 - 11
	X	1	2	3	4	5	7 8 6
\/.	es, ji	1mped	an odd	# of h	-512 M/S	2048	V=-4
		m in a seque ent this situa	nce is 8. The sequention?	ence decreases -24= = = = = = = = = = = = = = = = = = =	by 24% each ter $767 \rightarrow 0$.	m. What is the re	ecursive equation
12. T	he end of	a spring is pu	lled as far back as it	will go and the	en released. On t	he first bounce ba	ack, it extends 54
cm. (on its seco a. How 54 b. Is thi	far does the	spring extends 18 cr spring extend on its 25 025 cm ithmetic or Geomet	n. On its third k 18 th , 9 th , and 10 1054 (3) 17ic) How do yo	sounce back, it explit bounce back? $1 - \frac{1}{2} = \frac{1}{2} \cdot \frac{1}$	extends 6 cm. $ \frac{1}{120} $ $ \frac{1}{10} $ $ \frac{1}{3} $ $ \frac{1}{10} $	1 54 > \frac{1}{3} \tag{54} \tag{54} > \frac{1}{3} \tag{54} >
A=5	c. Can	you write the 3(Un-1)	recursive and expli	cit formulas?		360	
15. F	Type of sec	A1=9	An=An-1-3 -3(n-1) -3n+3	2	Sequence: 1, 17. Type of sequence: 1 18. Recursive: 1 19. Explicit: 1	X4 (=0)	4(a _{n-1}) 1-1

20. Error Analysis: Who is correct?

Callie and Joseph are trying to find the common ratio, recursive formula, and explicit formula for the sequence -5, -15, -45, -135, ... Their answers are provided. Is either one correct?

Joseph's Work
Common ratio: $\frac{-15}{-5} = 3$
Explicit Formula: $a_n = 3(-5)^{(n-1)}$
Recursive Formula: $a_n = 3 \cdot a_{n-1}$ $a_1 = -5$
E

Explanation:

Callie is 100% correct. Joseph mussed up his explicit by swapping the 1st tepon and rutio.

21. The distance (in feet) that a free-falling object falls in each second, starting with the first second, is given by the arithmetic progression 19, 57, 95, 133,...Create the explicit and recursive function for this situation. Find the distance that the object falls on the 15th second. \times

Hn=	19+38(n-1) F19+38n	7/19/57/	95 133	}	h=An-1	+38
\	9+381-30-	+38	1 15th=	19-	+38(15)	
22. My	12 th term is 128 and my 15 th term is 16. I have a	a con <u>stant rati</u> o. Ai	nswer the following	about m	ie: 551	F)
a.	Am I Arithmetic or Geometric		4=202144	. X [1001	100
b.	Constant Ratio: $ V = \frac{1}{3} = \frac{1}{3}$	c. Recursive for	mula: Al		262447	407
	120 8 2	An= =	(an-1)	2 3	655369	1024
d.	Explicit formula:	e. First 5 terms	are:	4	32766 1	512
	An= 128(1) 2/21/1/1/1		— /	5	ון דיסכיעו	25
	262144(2)			v	777 12	1/2

23. A large nursery has 1400 lilies to sell. Every day, the number of lilies available decreases by 70. Write an explicit formula for the number of lilies available to sell, where n is the number of days after April 1^{st} . There are 1400 lilies on April 1st to sell. Then, find the number of lilies that can be sold on April 8th, 9th, and 10th. B-> 840

10-700

An= 1400-70n 9-772 Let's change back and forth between forms! 24. Given the recursive definition, write the Given the explicit definition, write the explicit definition. $a_n = 5(2)^n \quad \text{A}_1 = |\mathcal{D}|$