Name:							

Directions: Identify whether the following information describes a linear, quadratic, and/or exponential function. Describe the graph for each type of function that would meet this criteria.

Function Characteristic	L, Q, and/or E	Graph Description AMY
1. The graph has the following end behavior: $as \ x \to \infty, \ y \to \infty \\ as \ x \to -\infty, \ y \to \infty$		
2. The graph has an x-intercept of (-1,0) and (1,0).	Q	12 4
3. The range of the function is [0,∞)	Q	
4. The graph has the following end behavior: $as \ x \to \infty, \ y \to \infty \\ as \ x \to -\infty, \ y \to -\infty$		Lio C
5.		Constant ROC
6. The domain of the function is $[-\infty, \infty]$.	L,e, Q	all have the same Domain
7. The graph has the following end behavior: $as \ x \to \infty, \ y \to 2$ $as \ x \to -\infty, \ y \to \infty$	2	symptote
8. The graph has a y-intercept of (0,-2).	L, E, Q	T + +
9. There is an asymptote of y=0.	2	
10. The range of the function is $(-\infty, 2)$	Q	Dalton

	e rate of ch tween each	_	ne same the graph.	L, E	Linuar - Adding same # Expo - nultiply same	#
be as	e graph ha havior: $x \to \infty, y \to -\infty, y \to -\infty, y \to -\infty$	- ∞	wing end		the state of the s	w O
13. Th	ere is no x-	-intercept.		E,Q		
14. Th	e graph ha 0).	ns an x-inte	ercept of	L, E,Q		_
15. ×		0 1 4 8	2 16	2	Multiplying by 2	7
16. ×		0 1 6 12	2 21	Q	Double different	le

