Warmup 2/10/20

Rachael's teacher asked her to write a transformation of a quadratic function reflected across the x axis, vertically stretched by 2, horizontally shifted 8 units to the right, and vertically shift down 3 units. Her answer is below. Did she write the transformations correctly? If not, explain and correct the error in the column provided.

Rachael's work	Your work
Inside has to My answer is $f(x) = -2(x+8)^2 - 3$	$y = -2(x-8)^2 - 3$

Vertex vs. Standard vs. Intercept forms

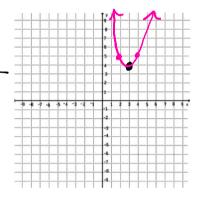
Vertex form

$$= \underbrace{\alpha(\chi - h)}^{2} + k$$

Given the following scenario, create the equation in vertex form.

You are ordering a quilt for a family member. The length of the square is reduced by 3 and then you add a little

piece of fabric at the end that is 4 square meters.



Describe the shifts that have happened to this equation.

Right 3 Up4

Graph it.

Now let's look at this equation.
$$y = x^2 - 6$$
 What form is this?

Let's convert it to vertex form using $x = -\frac{b}{2a}$

$$\frac{-(-6)}{2(1)} = 3$$

Convert the following into vertex form.

$$a = \begin{cases} y = x^{2} + 4x + 2 \\ b = 4 \end{cases} (= 2)$$

$$\frac{-(4)}{2(1)} = -2 \qquad y = |(x + 2) - 2|$$

$$(-2)^{2} + 4(-2) + 2 = -2$$

Convert the following into standard form.

$$y = 3(x-3)^{2}-7$$

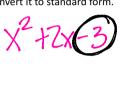
$$3(x-3)(x-3)-7$$

$$(3x-9)(x-3)-7$$

$$3x^{2}-18x+27-7$$

$$3x^{2}-18x+20$$

$$-3-9x$$

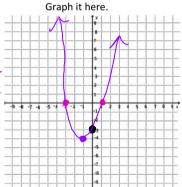

$$27$$

What form is the equation below in?

$$y = (x-1)(x+3)$$

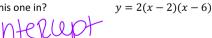
Intercept X-ints (1,0) (-30)

Convert it to standard form.


Then convert it to vertex form.

$$a=1$$
 $b=2$

$$\frac{-(2)}{2(1)} = -1$$


$$\frac{-(2)}{2(1)} = -1 \qquad (-1)^2 + 2(-1) - 3 \qquad \text{Vertex}$$

$$y = |(x+1)^2 - 4$$

Try this one.

What form is this one in?

 $y=2(x-4)^2-8$ Then convert it to vertex form.

Convert it to standard form.

$$-\frac{(-16)}{2(2)} = 4$$

$$2(4)^{2}-16(4)+24$$

Label what form each one is in.

1)
$$y = -3(x-1)^2 + 4$$

VORTEX

Convert from vertex form to standard form.

4)
$$y = 2(x+3)^2 - 3$$

$$2x^{2} + 6x + 6x + 18$$
 $2x^{2} + 12x + 15$

Convert from standard form to vertex form.

7)
$$y = 4x^2 - 16x - 1$$

 $Q = 4$ $b = -16$ $C = -1$

$$= \langle -1/6 \rangle$$

$$\frac{-(-16)}{7(4)} = 2$$

$$4(2)^2 - 16(2) - 1 = -17$$

$$y = 4(x-2)^2 - 17$$

Convert from intercept to standard form.

10)
$$y = 3(x - 1)(x + 3)$$

$$(3x-3)(x+3)$$

$$3x^{2}+9x-3x-9$$

$$(3x^{2}+6x-9)$$

2)
$$y = -(x+3)(x-4)$$

Interrept

3)
$$y = \frac{1}{2}x^2 - 4x + 3$$

Standard

5)
$$y = -\frac{1}{4}(4x - 4)^2$$

8)
$$y = -\frac{1}{2}x^2 + 4x$$
 $A = -\frac{1}{2}$
 $A = -\frac{1}{2}$
 $A = -\frac{1}{2}$

$$\frac{-(4)}{7(-4)} = 4$$

$$-\frac{1}{2}(4)^{2}+4(4)$$

$$y = \frac{1}{2}(x - 4)^{2} + 8$$

11)
$$y = -(x+2)(x+3)$$

$$(-x-2)(x+3)$$

$$-x^2-3x-2x-6$$

$$-x^{2}-5x-6$$

6)
$$y = -(x-7)^2 + 5$$

$$-x^2+7x+7x-49+5$$

9)
$$y = x^2 - 7x + 3$$

$$\frac{-(-7)}{2(1)} = \frac{7}{2} (3.5)$$

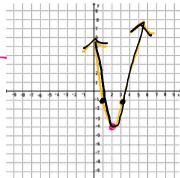
12)
$$y = \frac{1}{3}(3x - 9)(x + 5)$$

$$(\chi - 3)(\chi + 5)$$

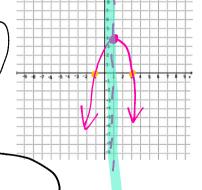
13)
$$y = \frac{1}{3}(x-1)^2 - 3$$

14)
$$y = -4(x+2)^2$$

15)
$$y = -(x - 10)^2 + 3$$


v.compress

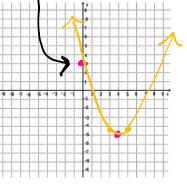
16) $y = x^2 - 4$


Let's graph some.

17)
$$y = 3(x-2)^2 - 4$$

$$(2,-4)$$
 Vertex $3(1-2)^2-4$

18)
$$y = -(x+1)(x-3)$$



$$19) \ y = \frac{1}{2}x^2 - 4 + 3$$

$$\frac{-(-4)}{7(\frac{1}{2})} = \frac{1}{2}(4)^{2} - \frac{5}{4}(4) + 3$$

$$\frac{1}{2}(3)^{2} - \frac{1}{4}(3) + 5 = -4.5$$

$$\frac{1}{2}(3)^2 - 4(3) + 5 = -4.5$$

