3.6 Interpreting Functions

A Practice Understanding Task

Given the graph of f(x), answer the following questions. Unless otherwise specified, restrict the domain of the function to what you see in the graph below. Approximations are appropriate answers.

f(x) = 0What is f(x) = 0

2. For what values, if any, does f(x) = 3?

- What is the x-intercept?
- 4. What is the domain of f(x)?
- 5. On what intervals is f(x) > 0?
- 6. On what intervals is f(x) increasing?
- 7. On what intervals is f(x) decreasing?
- 8. For what values, if any, is f(x) > 3?

Consider the linear graph of f(t) and the nonlinear graph of g(t) to answer questions 9-14. Approximations are appropriate answers.

- 9. Where is f(t) = g(t)?(-2,-1) (3.4)
- 10. Where is f(t) > g(t)? (-2,3)
- 11. What is g(0) + g(0) ?12. What is g(-1) + g(-1) ?
- 13. Which is greater: f(0) or g(-3)?
- 14 6 1 (6) (6) (1)

X	7 18. On what inter	$\frac{-5}{\log(s)} \text{ is } f(x) = 0?$ $\frac{-2}{\log s} = 2$ $\frac{-2}{\log s} \log s = \frac{-2}{\log s} \log s = \frac{-2}{$	2(2,6) by ore terval [-5,-1]?	to the your
$h(x) = 2^{x}$ $X = 2$ $3(2) - 2$	e following relationships to ans $(x) = 3x - 2$ 20. Which of the above relation 21. Find (12), $g(2)$, and $h(2)$. 22. Write the equation for $g(2)$. 23. Where is $g(x) = h(x)$? 24. Where is $g(x) = h(x)$? 25. Which of the above function $f(x) = h(x)$? wing functions, using the given constitution $f(x) = h(x)$?	g(x) = 8 $x = 4$ x	•	
26. This function has the following features: Increasing and has a domain of All Real N		27. This function has the following feat from [-5, 3]: has a domain from [-5, 1]	ures: f(3)>f(6); f(1) = 0; f(2) = 4; f(x) is inc 0]	reasing
28. This function has the following features	i: $f(x)$ has a constant rate of change; $f(5) = \frac{1}{100}$ Linar (5,0) $f(6)$	(5) = 5 (X) = 9		

28. Th

The following table of values represents two continuous functions, f(x) and g(x). Use the