Section 5.2 Notes: Probability Models
Recall:

Experimental Probability
Calculate from data
whexperiment or simulation
vs.

Chance behavior is unpredictable in the short run, but has a regular and predictable pattern in the long run. For example, toss a coin -in the long run, about $1 / 2$ will be heads $\mathrm{P}($ heads $)=1 / 2$.

Note:

$$
\begin{aligned}
& \text { Probability can be written as decimal } \\
& \text { Fraction of } \%
\end{aligned}
$$

Myths and Common Misinterpretations of Probabilities:

- Short-run regularity
\circ Remember that the patterns of probability apply to the long run.
- The Law of Averages
- Usually, random events are independent of previous events. For instance just because a fair coin has been flipped heads six times in a row, it is NOT more likely that the seventh flip will be tails. This is similar to what's called the Gambler's Fallacy.

Theoretical Probability Rules
Basic Vocabulary:

- Sample Space- set of all possible outcomos (denoted S)
- Event- subset of the sample space

Examples: What is the sample space in each of these situations?
a) Toss a coin once

$$
\text { heads, tails } \overline{3}
$$

b) Toss a coin 2 times

$$
\{H H, T T, H T, T H 3
$$

c) Roll 1 die

$$
\{1,2,3,4,5,6\}
$$

d) Choose 1 student from this class

$$
\begin{array}{r}
\text { Stone sudden from this class } \text {, Jeffrey F, James P, Cristina, Annilua } S_{11} \\
\text { Bella } \frac{3}{3}
\end{array}
$$

Fundamental Counting Principle A.K.A Multiplication Principle:
If you can do I tusk in "a" ways and another "b" ways
then both tusks can be done $a(b)$ ways
Examples:

1) If you go to a pizzeria and they have 3 different types of crusts, (thin, Sicilian, stuffed) 7 different toppings (pepperoni, sausage, onions, BBQ chicken, bacon, salami, mushrooms) and 5 different beverages (water, soda, lemonade, HI-C, and beer), how many different combinations of one crust, one topping and one beverage can you have?

$$
3 \cdot 7 \cdot 5=105 \text { ways }
$$

2) The standard Connecticut license plate is three letters, followed by 3 numbers. How many license plates can you form using these specifications?

$$
26 \cdot 26 \cdot 26 \cdot 10 \cdot 10=17,576,000
$$

3) How many 5 digit zip codes are possible?
4) John and Kate Gosselin had 8 children. The order from oldest to youngest is GGGGBBGB. How many different gender outcomes are possible when having 8 children?

$$
2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \text { of } 2^{8}=256
$$

Probability Facts:
0%

1. Prob always blt 0 al

$$
0 \leq P(A) \leq 1
$$

2. Sum of all probabilities for all atcomes $=1$

$$
P(S)=1
$$

3. Prob that an event does not occur is called a complement: 1 -prob event happening $P\left(A^{c}\right)=1-P(A)$
4. Prob at least one event occurs is 1 - prob that event never occurs $P($ at least one $)=1-P($ none $)$
Probability Notation:
$P(A)=p r o b$. of
event A curing
u union
add (OR)

$\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
Pub of A
and B happening
happening

- What are the chances of getting into Duke OR Stanford?
- What's the probability of rolling a 6 OR flipping a heads?
- What proportion of students like ice cream OR cookies?

Cannot be in $1^{\text {st }}$ or $2^{\text {nd }}$ period@ same time

All of the questions above are asking for a probability. What else do they have in common?

Say we have two events (A and B), and we want to know the probability that either event occurs. Then we want to know the probability of event A OR event B occurring. Here's how we find it:

The Addition Rule:
For two events A and B , the probability of A OR B occurring is...

Mutually Exclusive vs. Overlapping
 means that...
hate nothing nothing in common

- If \qquad , then the events are \qquad . This means that...

$$
\begin{array}{r}
A \rightarrow B \text { share } \\
\text { outcomes }
\end{array}
$$

Examples:

1. The table below gives the probability of each color for a randomly chosen milk chocolate M\&M:

Color:	Brown	Red	Yellow	Green	Orange	Blue
Probability:	0.13	0.13	0.14	0.16	0.20	$?$

a) What is the probability of selecting a blue $\mathrm{M} \& \mathrm{M} ? P(B / v e)=1-0.76=0.24$
b) What is the probability of selecting a red, yellow, or orange $M \& M$?
2. The chances Deborah gets promoted is 0.7 . The chances Matthew gets promoted is 0.5 . The chances they both get promoted is 0.3 . What is the probability that at least one of them is promoted?

3. Zack has applied to both Princeton and Stanford. He thinks the probability that that Princeton will admit him is 0.4 , the probability that Stanford will admit him is 0.5 , and the probability that both will admit him is 0.2 .

$$
\begin{aligned}
& P(P)=0.4 \\
& P(S)=0.5 \\
& P(P \cap S)=0.2
\end{aligned}
$$

(a) Make a Venn diagram marked with the given probabilities.

(b) What is the probability that neither university admits Rack?
(c) What is the probability that he gets into Stanford but not Princeton?

$$
P(s t)=0.3
$$

(d) What is the probability that he gets into Stanford or Princeton?

4. 3200 people were surveyed about their ice cream preference. They also hat to put their age on the survey. The results are below.

Ice cream preference

	Likes Chocolate Ice Cream	Likes Vanilla Ice Cream	Likes Strawberry Ice Cream	Total
Age	$\mathbf{6 0 4}$	$\mathbf{3 6 6}$	$\mathbf{3 2 2}$	$\mathbf{1 2 9 2}$
Under 30	$\mathbf{3 0 - 5 1}$	$\mathbf{4 0 4}$	$\mathbf{4 2 4}$	$\mathbf{2 8 6}$
Over 51	$\mathbf{3 3 6}$	$\mathbf{7 2}$	$\mathbf{3 8 6}$	$\mathbf{7 9 4}$
Total	$\mathbf{1 3 4 4}$	$\mathbf{8 6 2}$	$\mathbf{9 9 4}$	$\mathbf{3 2 0 0}$

a.) What's the probability that a randomly selected individual is over 51 ?

$$
P(51)=794 / 3200=0.248
$$

b.) What's the probability that a randomly selected individual likes vanillaite cream?
$P($ Van $)=862 / 3200=0.269$
c.) What's the probability that a randomly selected individual likes chocolate or vanilla ice cream?
d.) What's the probability that a randomly selected individual likes strawberry ice cream or is under the age of 30 ?

$$
\begin{aligned}
P(S U<30)=P(S)+P(<30)-P(S \cap<30) \\
994+1292-322=1964
\end{aligned}
$$

5. Suppose Freddy meets this girl at a party and manages to impress her enough to score her phone number. But when he gets home, he realizes that the last two digits of the phone number were smudged beyond recognition because his hands were ridiculously sweaty. What is the probability that Freddy guesses the last two digits on the first try?
