Am I Rational or Irrational?

Cubed Roots $\longrightarrow \sqrt[3]{\text { radicand }}$

- If the radicand is a perfect cube, it is

$\sqrt[3]{1}=1$	$\sqrt[3]{8}=2$	$\sqrt[3]{27}=3$	$\sqrt[3]{64}=4$	$\sqrt[3]{125}=5$
$\sqrt[3]{216}=6$	$\sqrt[3]{343}=7$	$\sqrt[3]{512}=8$	$\sqrt[3]{729}=9$	$\sqrt[3]{1000}=10$

- If the radicand is NOT a perfect cube, it is

- Examples: $\sqrt[3]{35} \approx 3.27106631018859 \ldots$

Squared Roots $\longrightarrow \sqrt{\text { radicand }}$

- If the radicand is a perfect square, it is

- If the radicand is NOT a perfect square, it is

RRatonac

 - Example: $\sqrt{38} \approx 6.164414002968976 \ldots$Simple Fractions Written with IntegeRS (Ex: $\frac{\frac{1}{2}}{3} \quad \frac{3}{4} \quad \frac{2}{3}$ because you can divide the numerator (top number) by the denominator (bottom number) and the numbers after the decimal either terminate (stop) or they repeat.
Fractions Written with
 (Ex: \qquad):

- They are IRRational because you can divide the numerator (top number) by the denominator (bottom number) and the numbers after the decimal do NOT terminate (stop) AND they do NOT repeat.

0.125
decimal

Be careful to read problems carefully! This statement is ALWAYS true:
The product of a nonzero rational number and an irrational number is irrational.

