Am I Rational or Irrational?

• If the radicand is a perfect cube, it is

Cubed Roots

$\sqrt[3]{1} = 1$	$\sqrt[3]{8} = 2$	$\sqrt[3]{27} = 3$	$\sqrt[3]{64} = 4$	$\sqrt[3]{125} = 5$		
$\sqrt[3]{216} = 6$	$\sqrt[3]{343} = 7$	$\sqrt[3]{512} = 8$	$\sqrt[3]{729} = 9$	$\sqrt[3]{1000} = 10$		

1RRational • If the radicand is NOT a perfect cube, it is • Examples: $\sqrt[3]{35} \approx 3.27106631018859...$

 $\sqrt[3]{radicand}$

Squared Roots $\sqrt{radicand}$ \rightarrow

• If the radicand is a perfect square, it is

$\sqrt{1}$	$\sqrt{4}$	$\sqrt{9}$	$\sqrt{16}$	$\sqrt{25}$	$\sqrt{36}$	$\sqrt{49}$	$\sqrt{64}$	$\sqrt{81}$
=1	=2	=3	=4	=5	=6	=7	=8	=9
$\sqrt{100}$	$\sqrt{121}$	$\sqrt{144}$	$\sqrt{169}$	$\sqrt{196}$	$\sqrt{225}$	$\sqrt{256}$	$\sqrt{289}$	$\sqrt{324}$
=10	=11	=12	=13	=14	=15	=16	=17	=18
$\sqrt{361}$	$\sqrt{400}$	$\sqrt{441}$	$\sqrt{484}$	$\sqrt{529}$	$\sqrt{576}$	$\sqrt{625}$		
=19	=20	=21	=22	=23	=24	=25		

- $\frac{|RRational}{|ER:|} \xrightarrow{\frac{1}{2}} \xrightarrow{\frac{3}{4}} \xrightarrow{\frac{2}{3}}$ • If the radicand is NOT a perfect square, it is
 - Example: $\sqrt{38} \approx 6.164414002968976...$

They are 'Kational _____ because you can divide the numerator (top number) by the denominator (bottom number) and the numbers after the decimal either terminate (stop) or they repeat.

Fractions Written with $\underline{\gamma}, \underline{\sqrt{32}}$ (Ex: $\underline{2}$):

• They are IRRADONAL because you can divide the numerator (top number) by the denominator (bottom number) and the numbers after the decimal do NOT terminate (stop) AND they do NOT repeat.

Rational

(Ex: $\frac{1}{2}$

Katior

ALWAYS TrueSOMETIMESNEVER TrueThe sum of a rational
number and an irrational
number isThe product of a rational
number is is sometimes:
Multiply any irrational number
sometimesThe sum of a rational
number and an irrational
number is is sometimes:
Multiply any irrational number
a calculator to see what you
get!The sum of two rational
numbers is
Multiply any irrational number and the
product is
$$RATOMAL$$

Ex:
 $V322 \bullet O = O$
-Choose any other rational with
any irrational number and the
product is $RATOMAL$
Ex:
 $V322 \bullet O = O$
-Choose any other rational with
any irrational number and the
product is $RATOMAL$
Ex:
 $V322 \bullet O = O$
-Choose any other rational
numbers is sometimes:
-If the irrational parts of the
numbers have zero sum, the sum
is
 $RATOMAL$ The sum of two rational
numbers is $RATOMAL$
Ex:
 $V322 + V32 = O$
 $V322 + V32 = O$
 $RATOMAL$ Ex:
 $V3 = \frac{1}{3} + \frac{1}{3} = \frac{2}{3}$ If the irrational parts of the
numbers have zero sum, the sum
is
 $RATOMAL$ The sum of two rational
numbers is
 $RATOMAL$ Ex:
 $V3 = \frac{1}{3} + \frac{1}{3} = \frac{2}{3}$ If not, the sum is
 $RATOMAL$ The product of two
rational numbers is
 $RATOMAL$ Ex:
 $V3 = \frac{1}{3} + \frac{1}{3} = \frac{2}{3}$ The product of two
irrational numbers is
 $RATOMAL$ The product of two
rational numbers is
 $RATOMAL$ Ex:
 $V3 = \frac{1}{3} + \frac{1}{3} = \frac{2}{3}$ The product of two
irrational numbers is
 $RATOMAL$ The product of two
rational numbers is
 $RATOMAL$ Ex:
 $V3 = \frac{1}{3} + \frac{1}{3} = \frac{2}{3}$ The product of two
irrational numbers is
 $RATOMAL$ The product of two
rational numbers is
 $RATOMAL$

Be careful to read problems carefully! This statement is ALWAYS true: The product of a **nonzero** rational number and an irrational number is irrational.