Warmup
(1) Simplify
(2) Multiply

$$
\text { (3) Convert } \frac{45 \mathrm{mpos}}{\mathrm{sec}} \text { to } \frac{\mathrm{ml}}{\mathrm{~min}}
$$

$$
\begin{gathered}
\frac{4 \sqrt{3}}{\int_{22}^{23}}+\frac{\sqrt{2}}{\frac{1}{2}}-\frac{\sqrt{3}}{l} \\
4 \sqrt{3}+2 \sqrt{3}-\sqrt{3} \\
5 \sqrt{3}
\end{gathered}
$$

$$
(3 x-2)(x+7)
$$

$$
(1 m L=15 d m p s)^{s e}
$$

$180 \mathrm{ml} / \mathrm{min}$

Dimensional Analysis/Units in Context
1.) $d=v t$

If the units for v are " cm / s " and the units fort are " s " What are the units for distance?

2.) $\mathrm{a}=\frac{v}{t}$

If the units for v are " m / s " and the units for t are " s " What are the units for a?

$$
a=\frac{V}{t}=\frac{\frac{m}{s}}{\frac{s}{1}}=\frac{m}{s} \cdot \frac{1}{s}
$$

3.) $C=k m t$
the units for C are "cal"
the units for m are "pounds"
the units for tare "minutes"
What are the units for k ?

4.) The formula for density d is $d=m / V$, where m is mass and v is $\overline{\text { volume. If mass is measured in }}$ kilograms and volume is measured in cubic meters, what is the unit rate for

5.) The tension caused by a wave moving along a string is found using the formula $\quad \mathrm{T}=\frac{m v^{2}}{L}$
If m is the mass of the string in grams, L is the length of the string in centimeters (cm), and v is the velocity of the wave in cm per second, what is the unit of the tension of the string, T ?
A. gram -cm per second squared B. cm per second squared
C. grams per cm-second squared
D. cm squared per second

$$
T=\frac{g\left(\frac{\mathrm{~cm}}{\sec }\right)^{2}}{c m}=\frac{g \frac{\mathrm{~cm}^{2}}{\mathrm{sec}^{2}}}{c m}=\frac{g \mathrm{~cm}^{2}}{\sec ^{2}} \cdot \frac{1}{6}
$$

6.) Convert 60 miles per hour to feet per minute.
 many dollars per day?

8.) A rectangular prism has a volume of $2 \mathrm{~m}^{3}$, a length of 40 cm , and a width of 50 cm . What is the height of the prism?
$1 e+2$

$$
V \stackrel{\text { prism }}{=} l \cdot w \cdot h
$$

40 cm $0.4^{n}=\ell$

$$
2=0.4 \cdot 0.5 \cdot h
$$

Ssm

9.) For every 12 kids, there are 5 dats.

For every 7 dings, there are 2 dats.
For every cham, there are 10 dinks.
How movylub wee tenter eec cham?

10.) When Bryce goes to work, he drives at an average speed of 65 miles per hour. It takes about 1 hour and 30 minutes for Bryce to arrive at work. His car travels about 25 miles per gallon of gas. If gas costs $\$ 3.65$ per gallon, how much money does Bryce spend going to work?

11.) The width of the rectangle is $\sqrt{2}$ cm but Katie has crazy fear of crazy numbers, so she estimates it to 1.41 cm . The length of the rectangle is $3 \sqrt{2} \mathrm{~cm}$ but Katie estimates to 4.24 cm . What is thea ref the rectangle? Calculate both decimals and radicals.

Which area of the rectangle is more precise? Why?

Round or estimate

$$
24140.16 \mathrm{hr}
$$

$$
5280 f t=1 \mathrm{mile}
$$

If you ride your bike to Athens from Commerce at a rate of 120 it take you to get there?
 Athens is 18 miles. How long would that be in centimeters?
(1 inch $=2.54 \mathrm{~cm}$)

$$
12 \text { in }=1 \mathrm{ft}
$$

13.) Jane noticed that her faucet was
dripping. She later figured out that the rate of dripping was 50 drops every minute. If 20 drops equals 1 milliliter, how many Titers per year is the faucet leaking?

$$
\frac{254 c \mathrm{~cm}}{14 \pi}
$$

$\frac{50 \mathrm{dnos} s}{1 \mathrm{~min}} \cdot \frac{1 \mathrm{mk}}{20 \mathrm{dmpos}} \cdot \frac{1 \mathrm{~L}}{100 \mathrm{~m} \mathrm{~m}}=\frac{0.025 \mathrm{~L}}{1 \mathrm{~min}}$ centimeters per hour, how long would

$$
\frac{2896819.2 \mathrm{~m}}{1} \cdot \frac{1 \mathrm{hr}}{120 \mathrm{ck}}
$$

12.)

How many gallons a year is the faucet leaking? (1 gal = 3.79 liters)

If you were pouring concrete for the base of a house, which answer would you want to use? Why?
 more precise

