Waremup

(2)

$$
\begin{aligned}
& \text { (2) simplify } \\
& \sqrt{4 \sqrt{3}}-2 \sqrt{1}+\sqrt{5} \\
& 5 \sqrt[1]{2} \\
& 33 \sqrt{3} \\
& 3 \sqrt{5}-2 \cdot 3 \sqrt{2}+\sqrt{5} \\
& 3 \sqrt{5}-6 \sqrt{2}+\sqrt{5} \\
& 4 \sqrt{5}-6 \sqrt{2}
\end{aligned}
$$

(3) Convert

60 miles/hr into $\mathrm{ft} / \mathrm{min}$
 $5280 \mathrm{ft} / \mathrm{min}$

How would you define perimeter?
Adding all sides

How would you calculate the perimeter of a square?

1. A rectangle has a length of 30 cm and height of 53 mm . What is the perimeter of this rectangle in

2. A rectangle has a length of 45 feet and height of 20 yards. What is the perimeter of this rectangle in feet?

$$
\begin{aligned}
& \frac{20 y d)}{20} \cdot \frac{3 \mathrm{ft}}{14 \mathrm{~N}}=60 \mathrm{ft} \\
& 0+4 \mathrm{f} \\
& \hline 103 \mathrm{ft} \\
& \hline 10 \mathrm{ft}
\end{aligned}
$$

3. A square has a side length of 520 meters. What is the perimeter of the square in kilometers?

4. A right triangle has legs of 2 feet and 18 inches. What is the perimeter of the triangle in inches

How would you define area?

5. A rectangle has a length of 8.2 cm and a height of 42 mm . What is the area of the square in square millimeters?

$0.52+0.52+0.52+0.52$

How would you calculate the area of a rectangle? A triangle?

$$
\begin{aligned}
& 12 \mathrm{in}=1 \mathrm{ft} \\
& \frac{1.5 \mathrm{f}}{1} \cdot \frac{12 \mathrm{in}}{12 \mathrm{zt}}=18 \mathrm{in} \\
& \frac{1}{2}(18)(10)=90 \mathrm{in}^{2}
\end{aligned}
$$

7. A square has a side of length 1.6 yards. What is the area of the square in square inches?

8. A rectangle has an area of $12 \mathrm{~m}^{2}$ and a length of 400 cm . What is the width of the rectangle?
l.w= Area
$\frac{4 \cdot w}{4}=\frac{12}{4} \quad w=3 m \quad 12 m^{2} \quad \frac{400 c m}{4 m}$
9. The length of a football field is 100 yards. Which of the following would be equivalent (the same) to the a. 300 feet
b. 100 meters $9,144 \mathrm{~cm}$
$3 \mathrm{ft} 3 \mathrm{ft}=1 y \mathrm{~d}$ d. 914.4 cm
e. $10,000 \mathrm{~cm}$
$1 y d=300 \mathrm{ft}$
$\operatorname{lin}=2.54 \mathrm{~cm}$

$$
100 \mathrm{~cm}=1 \mathrm{~m}
$$

$\frac{300 \mathrm{ft}}{1} \cdot \frac{12 \mathrm{xx}}{18 x} \cdot \frac{2.54 \mathrm{~cm}=1 \mathrm{ft}}{1 . \mathrm{x}}=91,44 \mathrm{~cm}$ 91.44 m

