Practice Worksheet: Graphing Quadratic Functions in Vertex Form

For \#1-6, label the axis of symmetry, vertex, y-intercept, and at least three more points on the graph.

1] $y=(x-3)^{2}$
Axis of Symmetry is $x=$ \qquad
Vertex: \qquad , __
Opens up or down?
Slope to point one unit from the vertex is \qquad . y-intercept: (0, \qquad)

4] $y=-2(x-2)^{2}-1$
Axis of Symmetry is $\mathrm{x}=$ \qquad
Vertex: (\qquad , \qquad
Opens up or down?
Slope to point one unit from the vertex is \qquad .
y-intercept: (0 , \qquad

2] $y=-(x+3)^{2}+5$
Axis of Symmetry is $\mathrm{x}=$
Vertex: \qquad , ___)
Opens up or down?
Slope to point one unit from the vertex is \qquad .
y-intercept: (0, \qquad _)

5] $y=\frac{1}{2}(x-3)^{2}+2$
Axis of Symmetry is $\mathrm{x}=$ \qquad
Vertex: \qquad , ___)
Opens up or down?
Slope to point one unit from the vertex is \qquad .
y-intercept: (0, \qquad)

3] $y=2(x+1)^{2}-3$
Axis of Symmetry is $\mathrm{x}=$ \qquad
Vertex: \qquad , ___)
Opens up or down?
Slope to point one unit from the vertex is \qquad _. y-intercept: (0, \qquad)

6] $y=-\frac{1}{4}(x+2)^{2}+1$
Axis of Symmetry is $\mathrm{x}=$ \qquad
Vertex: (___ ,__)
Opens up or down?
Slope to point one unit from the vertex is \qquad _. y-intercept: (0 , \qquad)

Write the equation of the parabola in vertex form.

Write the quadratic function in standard form.
13] $y=-(x+2)^{2}$

| 14] $y=(x-2)^{2}+4$ |
| :--- | :--- |

15] $y=2(x-3)^{2}+9$

