Warmup

1) On day 4 , we started measuring the amount of bacteria growing in your book bag from when you spilled lotion in it. You measure it for 50 days. The bacteria is doubling in size each day.

Domain (words, set, interval, inequality
Days

$$
\begin{array}{ll}
\{4,5,6 \ldots 503 & x<\infty \\
{[4,50} & {[5, \infty)} \\
4 \leq x \leq 50 & 5 \leq x<\infty
\end{array}
$$

Range (words, set, interval, inequality)
Bacteria
$\left\{2,4,8, \ldots 1,4 \times 10^{14}\right\}$
$\left[z, 1.41 \times 10^{14}\right]$
$z \leq y \leq 1.4 / \times 10^{14}$

Pere 2.4
What is domain?
x-values, independent, input
What are the following letters representing?

Q
Rational \#

$$
2, \sqrt{9}=3
$$

Natural \#

$-1,-2,-3, \ldots-\infty$

Continuous and discrete...we still struggle with this. First, what are the differences? How can we tell them apart? \longrightarrow change
change happens out the time
How can you tell the difference when:
a) You are given a word problem

Discrete \rightarrow golf balls in tub
Continues \rightarrow water ot of hose
b) You are given a graph

$$
\text { Discrete } \rightarrow \text { Dots }
$$

$$
\text { Continuous } \rightarrow \text { connected }
$$

c) You are given a function

$$
\text { sequences } \rightarrow \text { Discrete }
$$

Function \rightarrow Continuars

Key things here:

- If a function is continuous, the domain is going to be all real numbers
- Sequences (either one) are always DISCRETE
- Linear and exponential functions (where we swap the \mathbf{n} for the \mathbf{x}) are CONTINUOUS
- Another name for the common difference is Stope and another name for the ratio is base
- Arithmetic sequences ~ Linear Geometric sequences ~ exponential

So let's look at the following word problem and see what we can figure out.
Every day you are adding 3 golf balls to a bin that has an infinite amount of space.

1) Continuous or discrete?
2) What would be the domain?

Days $\{0,1,2 \ldots \infty\}$
$0 \leq x<\infty$
3) Would this bearithmetio or geometric? So is that linear or exponential? How do you know?

$$
\begin{gathered}
\text { Add } 3 \text { every } \\
\text { Day }
\end{gathered}
$$

Let's think back to the leaves that we were raking last week. What were the two options that we could do?

So for the first one where you made $\$ 2$ a bag, what kind of function is that? Linear Would it be continuous of discrete?

What would be the domain?

$$
\begin{aligned}
& \text { Ald be the domain? } \\
& \text { Bag } S \rightarrow 0,1,2 \ldots 00\}
\end{aligned}
$$

What did you like about this plan?
More \$ @ the start

The end option you made $\$ 0.02$, then $\$ 0.04$ then $\$ 0.08$ and so on such that the amount kept doubling.
Would this be continuous or discrete?

What would be the domain?
Bay

What did you like about this plan?

@

