\qquad

A line is going to shift very similar to a quadratic.

Let's look at what we have.

	$y=x+3$ How do we move? slope: $\frac{1}{1}$
$y=(x-1)$ How do we move? $\text { x-int: }(1,0) \quad \text { v-int: }(0,-1)$	$y=x-5$ How do we move? Doun 5 $\begin{array}{cc} \text { x-int: }(5,0) \quad(0,-5) \\ & \text { slope }: \frac{1}{1} \\ & \end{array}$

Linares Quadratic
Compare linear to quadratics. How are these similar? How are they different?
Horiz $\stackrel{y=\frac{1}{2}(x+3)}{\downarrow}{ }_{\substack{1 \\ L}}^{\text {Shift }}$ Same stretch left 3

Gad Horiz leta

x^{2} stretch

$$
\begin{aligned}
& \text { etch } \\
& \text { Vertex }(-3,0) \\
& y=L^{-x^{2}}-\frac{3}{1}
\end{aligned}
$$

Reflect Down 3
$\underset{X}{\operatorname{line} \rightarrow}$
${ }^{y=L^{-x^{2}-3}}{ }^{1}$ Down 3
Reflect no x-ints
Vertex $\left(0,-\frac{n o}{3}\right)=$
$y=5(x+4)^{2}+2 \sqrt{2} \downarrow$

stretch
Vepatax $(-4,2)$

IeR お'
compress \rightarrow steeper "tall" What happens to a line when there is a number lower than 1 for a slope?
H stretch \rightarrow Flatter $\rightarrow V$. compress

Write the equations for the following specific scenarios.

