\qquad

You are a tortoise, I am a hare and we are racing. Who wins?

Well that all depends. Let's take a deeper look at that. You say you will win because you are slow and steady but I say I am going to win because have the speed. The distance from the starting line of the hare is given by the function: $\boldsymbol{d}=$ $==t^{2}$ $\boldsymbol{t}^{\mathbf{2}}$ (d in meters and t in seconds)
Because lam so confident, being a hare and all, I give you a 1 meter head start. The distance from the starting line of the tortoise (you) including the head start is given by the function:
$d=2^{t}$ (di in meters and t in seconds)

1) At what times does the tortoise (you) catch up to the hare (me)? Graph both equations below. Start both equations at $x=-2$.

x	y
-2	0.25
-1	0.5
0	1
1	2
2	4
3	8
4	16
5	32

$$
d=t^{2}
$$

Hare

x	y
-2	4
-1	1
0	0
1	1
2	4
3	9
4	16
5	25

$(-2)^{2}$
$(-1)^{2}$
$(0)^{2}$
$(1)^{2}$
$(2)^{2}$
$(3)^{2}$
$(4)^{2}$
$(5)^{2}$

Think about time here. Can we have negative time? Where should we focus our eyes on this graph? Highlight the two graphs in two different colors from where we will inspect them further.
2) If the race course is super long (like miles and miles), who wins? How do you know? 16

Tor toise \rightarrow MUltiplying \rightarrow slow a gid steady
then takes off
3) At what times are we tied? How can you tell this on the graph? Let's sketch " jos on the graph provided below.

$$
(2,4) \text { at } 2 \text { secs, } 4 \text { meters }
$$

$(4,16)$ at 4 secs, 16 meters
4) If the racecourse is 15 meters long, who wins you or me? Why? Hare, at that time, the Hare is moving faster.

5) Let's look at certain speeds we reach. Fill in the table below. We are going to be finding the rate of change (slope) for each interval. That way we can compare who is faster when $;$

Rate of change is another phrase for

How do you find slope?

Check out these graphs. Answer the questions that go with them.
Looking at the 2 graphs, which one has a higher rate of change from $x=0$ to $x=2.5$?
$S(x)$ ble it's on top, steeper, higher

Which graph has the higher rate of change from $x=2.5$ to ∞ ?
How do you know? $P(x)$ be steeper on top, moving fader

Compare the rates of change for the following money scenarios.
You have $\$ 1$ when time begins and then meet 3 very nice genies, but you can only accept one of their offers.

\mathbf{t}	$Q(\mathbf{t})$
0	1
1	101
2	401
5	2501
9	8101
10	10001
14	1960
15	2250
30	90001

Who would you accept if you only had 10 days to live?
Luigi- has more money on day 9
Who would you accept if you wanted to make the most money in 1 year?

$$
\text { Epo } \rightarrow \text { rolling deep in yo }
$$

Who would you want if you wanted last cash? lii \rightarrow mere Buzz @ 00 money $I^{ \pm}$
slope Dockets \rightarrow lots of money @ the end What is the average rate of change for each function over the given interval?

$$
(3,6)(4,30)
$$

$\left.\begin{array}{|l|l|}\hline x & f(x) \\ \hline 3 & 15 \\ \hline 4 & 18 \\ 5 & 21 \\ \hline 6 & 24 \\ \hline\end{array}\right\}+3$
a) $f(x)$ from 3 to $4+3$
b) $f(x)$ from 5 to $6+3$
$\left.\begin{array}{|l|l|}\hline \boldsymbol{x} & \boldsymbol{g}(\boldsymbol{x}) \\ \hline 3 & 2 \\ \hline 4 & 15 \\ \hline 5 & 30 \\ \hline 6 & 47 \\ \hline\end{array}\right\rangle+13>+15>+2$
c) $g(x)$ from 3 to $4 \quad 3$
d) $g(x)$ from 5 to 6 17

$\left\{\begin{array}{|l|l|}\hline \mathbf{x} & \boldsymbol{h (x)} \\ \hline 3 & 6 \\ \hline 4 & 30 \\ \hline 5 & 150 \\ \hline 6 & 750 \\ \hline\end{array}>\times 5 \times 5\right.$

$$
\begin{aligned}
& \frac{30-6}{4-3}=24 \\
& \text { exponential } \\
& \hline
\end{aligned}
$$

e) $g(x)$ from 3 to 424
f) $g(x)$ from 5 to 6

$$
\frac{750-150}{6-5}=600
$$

