Warmup

$$
\begin{aligned}
& \text { 31) } \frac{x+2}{x+10}=\frac{6}{7} \quad x=46 \\
& 6 x+60=7 x+14 \\
& -6 x-14-6 x-14 \\
& 42)^{\circ} \frac{z}{z}=\frac{x m}{y}: 4 \text { for } x \\
& \frac{z y}{m}=\frac{x m}{m} \frac{z y}{m}=x
\end{aligned}
$$

39) $g=c x y$ for x

$$
x=\frac{\bar{g}}{c y}
$$

50) $(8 n-5)\left(3 n^{2}-7 n-5\right)$

$$
3 n^{2}-7 n-5
$$

4.2 Elvira's Equations

A Solidify Understanding Task

Elvira, the cafeteria manager, likes to keep track of the things she can count or measure in the cafeteria. She hopes this will help her improve the efficiency of the cafeteria. To remind herself to keep track of important quantities, she has made a table of variables and descriptions of the things she wants to record. Here is a table of things she has decided to keep track of.

Symbol	Meaning (description of what the symbol means in context)	Units (what is counted or measured)
\boldsymbol{S}	Number of students that buy lunch in the salad line	Students buy Salad

Elvira has written the following equation to describe a cafeteria relationship that seems meaningful to her. She has introduced a new variable A to describe this relationship.

$$
A=\frac{S+W+P}{C} \quad \frac{\begin{array}{l}
\text { salads }+\begin{array}{l}
\text { wichs }
\end{array}+\begin{array}{l}
\text { studs } \\
\text { pizza }
\end{array} \\
\# \text { Classes }
\end{array}}{\text { studs }}
$$

1. What does A represent in terms of the school and the cafeteria? Record this information in the table above.
 student's in each class wo buy hunch
2. Using what you know about manipulating equations, solve this equation for S. Your solution will be of the form $S=$ an expression written in terms of the variables A, C, W and P.

$$
A=\frac{s+w+p}{c}
$$

3. Does your expression for S make sense in terms of the meanings of the other variables? Explain why or why not.

$$
R=P_{L}(S+W+P)
$$

4. What does R represent in terms of the school and the cafeteria? Record this information in the table above.

$$
\text { Price/lunch }\left(\begin{array}{c}
\text { salads } \\
\text { studs }
\end{array}+\begin{array}{l}
\text { wish } \\
\text { studs }
\end{array}+\begin{array}{c}
\text { Pizza } \\
\text { studs }
\end{array}\right)
$$

Money coming from lunch room Revenue
5. Using what you know about manipulating equations, solve this equation for P_{L}.

$$
\frac{R=\frac{P L}{(S+S+y p+P)}}{\left.(S+\omega+)^{2}\right)(\$+y+P)}
$$

$$
P_{L}=\frac{R}{S+w+P}
$$

6. Does your expression for P_{L} make sense in terms of the meanings of the other variables? Explain.

$$
\text { All stodelent }=\text { Price } / / \text { neh } \quad \frac{10000}{700}=\$ / 4.28
$$

7. Elvira notices that she uses the expression $S+W+P$ a lot in writing other expressions. She decides to represent this expression using the variable T, so that $T=S+W+P$. What does T represent in terms of the school and the cafeteria? Record this information in the table above.

$$
T=s+\omega+p \text { total students }
$$

8. Elvira is having a meeting with the staff members who work in the lunchroom. She has created a couple of new equations for the food servers.

$$
D_{F}=\frac{T \cdot P_{L}}{F} \quad M=\frac{M_{T}}{T}
$$

a. What does D_{F} represent in terms of the school and the cafeteria? Record this information in the table above. total studs \& Lune Pnic/unch $=$ A seRVeRS
 $F \cdot D_{F}=\frac{T \cdot P_{1}}{E} \cdot \frac{F \cdot D_{F}=T \cdot T P}{T} P=\frac{F \cdot D_{F}}{T}$
9 a. What does M represent in terms of the school and the cafeteria? Record this information in

b. Solve this equation for T. Describe why your solution makes sense in terms of the othertime to variables.

$$
\frac{T M}{M}=\frac{M_{T}}{M} \quad T=\frac{y_{T}}{M}
$$

10. One of the staff members suggests that they need to write expressions for each of the following. Using the variables in the table, what would these expressions look like?
a. The average number of students served each minute
b. The average number of minutes students wait in the pizza line $\frac{T}{M_{T}}$ totalstds ${ }^{k}$ total time \leqslant

