Grab a computer - login and go to web browser to Desmos

GSE Algebra 1

7.1 - Notes

Name: \qquad
The goal here to see what happens to parabolas as we move them around a graph, what happens in the equation and how that can affect the tables.
Let's look at quadratics again. What shape do they make? parabola
Match the correct statement to the description below.

Matching Equation (A, B, C or D)	Statement	Function Equation	
B	The length of each side of a square is increased by 5 units.	A	$A(x)=5 x^{2}$
\bigcirc	The length of each side of a square is multiplied by 5 units.	B	$A(x)=(x+5)^{2}$
0	The area of a square is increased by 5 square units.	C	$A(x)=(5 x)^{2}$
A	The area ff a square is multiplied by 5 .	D	$A(x)=x^{2}+5$

What is the domain of $y=x^{2} ?(-\infty, 00)$
PARENT FUNCTION: $y=x^{2}$

Let's look at how each part above changes the graph, equation and table.

$$
y=x^{2}+5
$$

How has this changed from the parent function $y=x^{2}$?

Euntion	
parent	Mov
graph	up 5

Table			$+\mathbf{S}$
$\boldsymbol{y}=\boldsymbol{x}^{2}$		$\boldsymbol{y}=\boldsymbol{x}^{2}+\mathbf{5}$	
x	y	x	y
-2	4	-2	9
-1	1	-1	6
0	0	0	5
1	1	1	$\mathbf{6}$
2	4	2	$\mathbf{9}$
3	9	3	14

Let's look at a few more. Try these two based off the work from above.

$$
x+5=0
$$

Let's look at a few more. Try these two based off the work from above.
a) $y=(x+2)^{2}$

Now this one:

Now try these two:

fat

* Horizontal stretch
* Vertically compressed
$\frac{1}{4}(-2)^{2}$ * If your \# in $2(-2)^{2} \quad 2(-1)^{2}$
front greater than $1 \rightarrow V$. stretch * If your \# in front less than I
(Fraction)
\rightarrow H. stretch

Let's look at what happens when the parabola is flipped upside down.

$$
y=-x^{2}
$$

Equation
Table

$y=x^{2}$	$y=-x^{2}$
	upside
	down
	Reflection
	Read

$y=x^{2}$		$y=-x^{2}$	
x	y	x	y
-2	4	-2	-4
-1	1	-1	-1
0	0	0	0
1	1	1	-1
2	4	2	-4
3	9	3	-9

So what happens when the number in front of the x^{2} is negative?

This is called a
 over the x-axis.

Bringing it ALL together!

The vertex form of a quadratic is all of what you just did put together.

What does each part mean?

Tell what has happened just based on the equation.

