In this course you will be asked to describe or interpret data displays (usually quantitative displays). To do this, just remember to use your S.O.C.S.!
$\mathbf{S}_{\text {have }} \mathbf{O}_{\text {these }} \mathbf{C}_{\text {the }} \mathbf{S}_{\text {plead }}$
$\underline{\mathbf{S}^{2} .}$
skewedness, approx normal symmetry Uniform, bimodal(Peals) symmetric

uniform

shew Right

bimodal
$\bar{O}_{\text {nites }}^{--}$
An outlier is... an extreme value that differs greatly from other points

If you are given data, you can actually calculate for outliers! Calculating Outliers:
(1) Find $I Q R=Q B-Q 1$
(2) Multiply to Find upper L Lower Fence
$L F: Q 1-1.5(I Q R)$
$U F: Q 3+1.5(I Q R)$
Example: Test Score Data. Are there outliers? $10,67,72,75,78,81,81,82,105$

$$
L F=51.5
$$

$$
U F=99.5
$$

$10+105$ are oottiens,
any valve that falls
above or below those \#S

What do I look for when trying to describe center?
centric value that seems to balance all
What numerical values are used to describe the center?

1. mean - \bar{X}-average

* not resistant to outliers * skew \rightarrow mean is pulled in direction

2. median
middle \# when in orDer

What do I look for when trying to describe spread?

What numerical values are used to describe the spread?
1.
2.

Description Template:

Need help describing a set of data? Check out this template to help you get started!
The distribution of \qquad is \qquad indicating \qquad There (interpret in context) (are/are no) outliers, as verified by the 1.5 IQR Rule. [If there are outliers, name them and show the verification calculations.]

The typical \qquad is \qquad as measured by the \qquad . The distribution of values \qquad (variable) (value \& units) (mean/median) (are/are not) consistently spread about the \qquad as indicated by the \qquad of \qquad .

Mean? Median? IQR? Standard Deviation? Which one do I use???

Use these numerical descriptions...	if....

Connection to Shape and Center:

Comparing Data

You will be asked to compare the distributions of 2 more sets of data. How do you do that?

Example Time!

1. The table lists the number of home runs for each American League baseball team in 1989.

94	101	108	116	117	122	126
127	127	129	130	134	142	145

Sketch a data display for the data above and interpret the data.
2. The Chapter 1 test scores for Class 4 A and Class 4 B are show below.

In context, compare the distributions of test scores for the two classes.

Linear Transformations

Say a class took a test and you analyzed all the test scores. After you analyzed them, finding the center, shape, spread, and outliers, the teacher decided to add 5 points to everyone's scores. How would this effect the analysis? What if the teacher added 5% to every score instead?

Analysis	Original Grade	Adding 5 Points	Adding 5\%
	75		
	80		
	89		
	92		
	79		
	95		
	76		
	85		
Mean	84		
Median	97		
Standard Deviation			
Q1			
Q3			
Range			

So what can we conclude about the analysis when we transform the data?

If this is done to the data...	These values will be affected...

More Examples!

1. Suppose that a student scores 68 on his AP Exam. In an effort to standardize grades, the grades are "curved" so that 22 points was added to each student's score, raising this student's grade to 90 . Indicate how curving the grades would affect each of the following summary statistics.
a.

Mean, Median, Range, IQR, Standard deviation
b. How would the statistics listed in part (a) change if the students received a 10% curve?
c. Suppose the table below shows the values of statistics listed in part a. Fill in the table for when 22 points are added to the students scores and for when 10% is added to the student scores.

	Old Value	+22 points	$+10 \%$
Mean	85		
Median	80		
Range	42		
IQR	23		
Standard Deviation	5.4		

